Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.21.22282563

ABSTRACT

The COVID-19 pandemic has taken a devastating toll around the world. Since January 2020, the World Health Organization estimates 14.9 million excess deaths have occurred globally. Despite this grim number quantifying the deadly impact, the underlying factors contributing to COVID-19 deaths at the population level remain unclear. Prior studies indicate that demographic factors like proportion of population older than 65 and population health explain the cross-country difference in COVID-19 deaths. However, there has not been a holistic analysis including variables describing government policies and COVID-19 vaccination rate. Furthermore, prior studies focus on COVID-19 death rather than excess death to assess the impact of the pandemic. Through a robust statistical modeling framework, we analyze 80 countries and show that actionable public health efforts beyond just the factors intrinsic to each country are necessary to explain the cross-country heterogeneity in excess death.


Subject(s)
COVID-19 , Death
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.01.278952

ABSTRACT

The evolutionary dynamics of SARS-CoV-2 have been carefully monitored since the COVID-19 pandemic began in December 2019, however, analysis has focused primarily on single nucleotide polymorphisms and largely ignored the role of structural variants (SVs) as well as recombination in SARS-CoV-2 evolution. Using sequences from the GISAID database, we catalogue over 100 insertions and deletions in the SARS-CoV-2 consensus sequences. We hypothesize that these indels are artifacts of imperfect homologous recombination between SARS-CoV-2 replicates, and provide four independent pieces of evidence. (1) The SVs from the GISAID consensus sequences are clustered at specific regions of the genome. (2) These regions are also enriched for 5 and 3 breakpoints in the transcription regulatory site (TRS) independent transcriptome, presumably sites of RNA-dependent RNA polymerase (RdRp) template-switching. (3) Within raw reads, these structural variant hotspots have cases of both high intra-host heterogeneity and intra-host homogeneity, suggesting that these structural variants are both consequences of de novo recombination events within a host and artifacts of previous recombination. (4) Within the RNA secondary structure, the indels occur in "arms" of the predicted folded RNA, suggesting that secondary structure may be a mechanism for TRS-independent template-switching in SARS-CoV-2 or other coronaviruses. These insights into the relationship between structural variation and recombination in SARS-CoV-2 can improve our reconstructions of the SARS-CoV-2 evolutionary history as well as our understanding of the process of RdRp template-switching in RNA viruses.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL